

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶): DATE: (日期):2017-04-18

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: KM 450V120μF(φ18x30)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL	SUPPLIER			TOMER
PREPARED (拟定)	CHECKED (审核)		APPROVAL (批准)	SIGNATURE (签名)
李婷	王国华			

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

	SPECIFICATION KM SERIES						FERNA R	ATION H ECORDS	ISTORY
D	D (D			
Rev.	Date	Mark	Pa	ge	Contents	Purpo	ose	Drafter	Approver
	Vorsion		01					Dago	1
	Version		01					Page	1

	MAN YUE ELECTH COMPANY LIM		ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES								SA	MX	ON	
Tab	ole 1 Product Dimen Safety vent for $\geq \Phi$ 6.3	sions al	nd Cha	racteristics $\downarrow_{\phi d \pm 0.05}$							1	Unit: m	m	
	$L_{-1.0}^{+\alpha}$		min	4 min		$\Phi D_{-0.5}^{+\beta}$	F±0.5	β d * If it is	<20 : α=1.5; D<20 : β flat rubb surface.	=0.5; ΦD	≥20 :		from the f	at rubber
N	SAMYON	WV	Can		Temp	tan δ	Leakage	Max Ripple Current at	Load	Dir	nensio (mm)	n		
N 0.	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(℃)	tanδ (120Hz, 20°C)	Leakage Current (µA,2min)	Max Ripple Current at 105℃ 120Hz (mA rms)	Load lifetime (Hrs)	Dir D×L	nensio (mm) F	рn фd	Sleeve	
			Cap. (µF) 120	Cap. tolerance		(120Hz,	Current	Current at 105℃ 120Hz	lifetime		(mm)		Sleeve PET	
0.	Part No.	(Vdc)	(µF)	-	range(℃)	(120Hz, 20℃)	Current (µA,2min)	Current at 105°C 120Hz (mA rms)	lifetime (Hrs)	D×L	(mm) F	фd		

	C O N T E N T S	Sheet
1.	Application	4
2.	Part Number System	4
3.	Construction	5
4.	Characteristics	5~10
4.1	Rated voltage & Surge voltage	5 10
4.2	Capacitance (Tolerance)	
4.3	Leakage current	
4.4	tan δ	
4.5	Terminal strength	
4.6	Temperature characteristic	
4.7	Load life test	
4.8	Shelf life test	
4.9	Surge test	
4.10) Vibration	
4.1	Solderability test	
4.12	2 Resistance to solder heat	
	B Change of temperature	
	Damp heat test	
	Vent test	
	Maximum permissible (ripple current)	
	oduct Marking	11
	ist of "Environment-related Substances to be Controlled ('Controlled lbstances')"	12
A	ttachment: Application Guidelines	13~16

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

1. Application

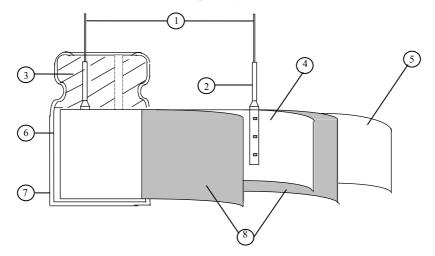
This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 4 5 6 7 89 101112 1314 123 1516 17 тс Ρ EGS 1 н D11 S 0 5 м 1 TOL SAMXON SLEEVE PRODUCT LINE MATERIAL SERIES CAPACITANCE VOLTAGE CASE SIZE TYPE Cap(MFD) Tolerance (%) Code Code Voltage (W.V.) Code Case Size Feature Code SAMXON Product Lin ries ESM EKF ESS EKS EGS EKM EKG EOM EZM EZS 0D (4) Co RR For internal use only 3 B .5 1 4 C Radial bulk 0.1 104 ± 5 J 2.5 0E (The product lines 4 0G we have H.A.B.C.D. Ammo Taping 0.22 224 6.3 OJ к E,M or 0,1,2,3,4,5,9) ±10 0K 8 0.33 334 2.0mm Pitch тτ 10 1A 10 G 12.5 I 13.3 J 13.5 V 14.4 4 14.5 A 16.5 7 18.5 8 20 M 225 O 300 P 255 O 304 W 335 Q 40 R 422 4 ±15 L 12.5 1B 2.5mm Pitch τu 0.47 474 1C 16 EGI м 20 1D ±20 105 3.5mm Pitch тν Sleeve Material 1 Cod 듣증 25 EGK EGE EGD 1E тс PET Р 30 11 5.0mm Pitch 2.2 225 Ν ±30 32 13 Lead Cut & Form 35 ERS 3.3 335 1V -40 w ERF Z2 N 25 O 30 P 34 W 35 Q 40 R 42 4 45 6 51 S 3.5 T 76 U 80 8 90 X 00 Z 40 1G СВ-Туре СВ 42 4.7 475 1**M** -20 0 А ER 50 1H ERI СЕ-Туре CE 10 106 57 1L ERD -20 +10 С 63 1J HE HE-Type 45 51 33.5 76 80 90 100 22 226 71 **1**S ER. 75 1**T** 6 -20 +40 ERE × KD-Type ĸD 336 ERC EFA ENP 33 80 1K 85 1R -20 +50 FD-Type FD s 47 476 90 19 ENH 100 2A 4.5 5 455 5 065 4 54 7 07 7 77 7 77 2 T2 1 11 1 11 5 1A 2 12 5 1B 3 13 5 1C 0 20 5 25 5 2J 0 30 5 3A 5 3E -10 0 ЕН-Туре EΗ в 107 100 120 20 5.4 EAP EQP EDP 125 2B PCB Termial 227 -10 +20 220 v 150 2Z 160 2C 10 ETP EHP EUP EKP EEP sw -10 +30 330 337 Q 180 2P 11.5 200 2D Snap-in sx 12 2.5 13 3.5 477 470 12 -10 +50 215 22 т 13.L 20 2; EFF 220 2N sz 2200 228 23 -5 +10 230 EVP EGP EWR EWU EWT EWS EWF EWS EWH EWL EWB VSS Е 250 2E Lug SG 29.5 22000 229 -5 +15 275 2Т F 3 300 21 05 33000 339 -5 +20 310 2R 35 G 50 80 1L 1K 1M 1P 06 315 2F 47000 479 330 2U 0 +20 R Т5 350 2V 100000 10T Screw 360 2X 0 +30 0 т6 VNS VKS VKM VRL VRL 375 2Q 150000 15T 40 10 1R 1E 1S 1F 1T 1U 1V 0 +50 385 2Y I. D5 2G 400 220000 22T +5 +15 420 2M z D6 VZS 450 2W 330000 ззт +5 +20 D 500 2H 550 25 1000000 10M +10+50 Y 600 26 2J 1500000 15M 630 +10 +30 н 2200000 22M 3300000 33M 5

Version

01

Page


4

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		5
		U	

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

	ITEM				PE	RFOR	MANC	E				
	Rated voltage	WV (V.DC)	6.3	10		6	25	35	50	63	100	
	(WV)	SV (V.DC)	8	13		20	32	44	63	79	125	
4.1											·1	
	Surge	WV (V.DC)	160	200	220	250	350	400	420	450		
	voltage (SV)	SV (V.DC)	200	250	270	300	400	450	470	500		
4.2	Nominal capacitance (Tolerance)	<condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria></condition>	requend oltage `empera	: uture :	Not n 20 ± 2	°C	an 0.5V1					
4.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Tabl</criteria></condition>	he capa then, m					stor (1	$k\Omega \pm 10$	0Ω) in s	eries for 2	
4.4	tan δ	See 4.2, Nor < Criteria >	<condition></condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature.									
		Condition> Tensile Str Fixed the or seconds. Bending Str Fixed the or 90° within 2 seconds.	ength o capacito rength c apacitor 2~3 sec	or, appli of Term , applie onds, an	ed for inals. d force nd the	to ben	t the ter	minal (1 ° to its	~4 mm original	from the	rubber) fo	
4.5	Terminal atmosphere:	Diamet	er of le	ad wire			gf)	`		g force iv (gf)		
	strength		nm and				0.51)			(0.25)		
		Over 0.	5mm to	0.8mm	ı	10	(1.0)		5 (0	0.51)		
		<criteri< b=""> No notic</criteri<>		hanges	shall ł	e foun	d, no bro	eakage (or loose	ness at the	e terminal.	

Version	01		Page	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<condition></condition>	T (*	т	(%)	1		т.		
		STEP	Testi		rature(°C)			Time		
		1		20 ± 2				thermal e	-	
		2		-40(-25)				thermal e	•	
		3		20 ± 2		-		thermal e	*	
		4		105±				thermal e	•	
		5		20 ± 2	2	Time	to read	h thermal e	equilibriu	m
		<criteria></criteria>				4 4 751 1				
		a. $\tan \delta$ shall				4.4The l	eakage	current me	asured sl	nall not
	Temperature	more than 8 tin		-		:4 . C 14.	. 4 47	1 1 1		.h.a.11
	characteristi	b. In step 5, t more than the			nin the lin	it of iter	n 4.41	пе теакаде	current	snall not
4.6	cs	c. At-40°C (-2	-		(z) ratio	hall not	evceed	the value of	of the fol	lowing
		table.	23 C), II	inpedance	(Z) 1410 3	nan not	CACCCU			lowing
		Working Volta	ge (V)	6.3	10	16	25	35	50	63
		Z-25°C/Z+2	0°C	5	4	3	2	2	2	2
		Z-40°C/Z+2	0°C	10	8	6	4	3	3	3
		Working Voltag	ge (V)	100	160~220	250-	-350	400~420	450	
		Z-25°C/Z+2		2	3		1	6	15	
		Z-40°C/Z+20		3		_	-			
		For capacitanc	1	. 1000		-	1 1/		7 25/7 1	\mathbf{n}°
			e value	$> 1000 \mu$	F. Add 0.3	b per and	ther I	$100 \ \mu$ F for	L-23/L+.	20 C.
		1 of equiviliance	e value	μ 0001 <		-		00 µ F for 00 µ F for 2		
		Capacitance, ta			Add 1.0	per ano	ther 10	00 µ F for 2		
		-			Add 1.0	per ano	ther 10	00 µ F for 2		
		Capacitance, ta	n ^δ , an	d impedar	Add 1.0 nce shall b	per ano e measur	ther 10 ed at 1	00 µ F for 2 20Hz.	Z-40°C/Z	Z+20℃.
		Capacitance, ta <condition> According to I 105°C ±2 with</condition>	n ^δ , an EC6038 h DC bi	d impedar 34-4No.4. as voltage	Add 1.0 nce shall b 13 method e plus the r	s, The ca	ther 10 red at 1 apacito le curr	00 µ F for 2 20Hz. r is stored a ent for Tab	Z-40°C/Z t a tempe le 1. (Th	erature of the sum of
		Capacitance, ta Condition> According to I 105°C ±2 witt DC and ripple	n δ , and EC6038 h DC bi	d impedar 34-4No.4. as voltage voltage sł	Add 1.0 nce shall b 13 method e plus the r nall not ex	s, The ca ated ripp	ther 10 red at 1 apacito le curr e rated	00 µ F for 2 20Hz. r is stored a ent for Tab working v	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
		Capacitance, ta: <condition> According to I 105°C ±2 with DC and ripple product should</condition>	n^{δ} , and EC6038 h DC bi e peak	d impedar 34-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec	s, The ca ated ripp	ther 10 red at 1 apacito le curr e rated	00 µ F for 2 20Hz. r is stored a ent for Tab working v	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
	Load	Capacitance, tat <condition> According to I 105°C ±2 witt DC and ripple product should result should n</condition>	n^{δ} , and EC6038 h DC bi e peak	d impedar 34-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec	s, The ca ated ripp	ther 10 red at 1 apacito le curr e rated	00 µ F for 2 20Hz. r is stored a ent for Tab working v	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
4.7	life	Capacitance, tat <condition> According to I 105°C ±2 with DC and ripple product should result should n <criteria></criteria></condition>	$n \delta$, and EC6038 h DC bite peak l be testion neet the	d impedar 34-4No.4. as voltage voltage sh ed after 16 following	Add 1.0 nee shall b 13 method e plus the r hall not ex 6 hours rec g table:	s, The ca ated ripp cceed the	ther 10 red at 1 apacito le curr e rated time at	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
4.7		Capacitance, tat <condition> According to I 105°C ±2 with DC and ripple product should result should n <criteria> The characteri</criteria></condition>	$n \delta$, and EC6038 h DC bite peak l be testineet the	d impedar 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nee shall b 13 method e plus the r nall not ex 6 hours rec g table: e followin	s, The ca ated ripp cceed the overing	ther 10 red at 1 apacito le curr e rated time at	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
4.7	life	Capacitance, tat <condition> According to I 105°C ± 2 witt DC and ripple product should result should n <criteria> The characteri Leakage</criteria></condition>	n δ , and EC6038 h DC bi e peak l be test neet the estic sha	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in	per ano e measures, The ca ated ripp acceed the overing g requires 4.3 shall	ther 10 red at 1 apacito le curr e rated time at ements. be sati	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
4.7	life	Capacitance, tat <condition> According to I $105^{\circ}C \pm 2$ with DC and ripple product should result should n <criteria> The characterit Leakage Capacit</criteria></condition>	n δ , and EC6038 h DC bi e peak l be test neet the estic sha	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within ±	s, The ca ated ripp ceed the overing <u>g require</u> 4.3 shall 20% of	ther 10 red at 1 apacito le curr e rated time at ements. be sati	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value.	Z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi	erature o ne sum o Then the
4.7	life	Capacitance, tax <condition> According to I 105°C ± 2 with DC and ripple product should result should n <criteria> The characterit Leakage Capacit tan δ</criteria></condition>	n δ , and EC6038 h DC bi e peak δ l be test neet the estic sha e curren ance Ch	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in Within <u>±</u> Not more	per ano e measures, The ca ated ripp acceed the overing g required 4.3 shall 20% of than 20	ther 10 red at 1 apacito le curr e rated time at <u>ements</u> . <u>be sati</u> <u>initial</u>	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie	Z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value.	erature o ne sum o Then the
4.7	life	Capacitance, tat <condition> According to I $105^{\circ}C \pm 2$ with DC and ripple product should result should n <criteria> The characterit Leakage Capacit</criteria></condition>	n δ , and EC6038 h DC bi e peak δ l be test neet the estic sha e curren ance Ch	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in Within <u>±</u> Not more	per ano e measures, The ca ated ripp acceed the overing g required 4.3 shall 20% of than 20	ther 10 red at 1 apacito le curr e rated time at <u>ements</u> . <u>be sati</u> <u>initial</u>	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value.	Z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value.	erature o ne sum o Then the
4.7	life	Capacitance, tax <condition> According to I $105^{\circ}C \pm 2$ with DC and ripple product should result should n <criteria> The characterit Leakage Capacitt tan δ Appeara</criteria></condition>	n δ , and EC6038 h DC bi e peak δ l be test neet the estic sha e curren ance Ch	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in Within <u>±</u> Not more	per ano e measures, The ca ated ripp acceed the overing g required 4.3 shall 20% of than 20	ther 10 red at 1 apacito le curr e rated time at <u>ements</u> . <u>be sati</u> <u>initial</u>	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie	Z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value.	erature o ne sum o Then the
4.7	life	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterit Leakage Capacit tan δ Appeara</criteria></condition>	n δ , and EC6038 h DC bi e peak δ l be test neet the astic sha e curren ance Ch	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange	Add 1.0 nee shall b 13 method e plus the r nall not ex 6 hours rec g table: e followin Value in Within <u>±</u> Not more There sha	s, The ca ated ripp acceed the overing g require 4.3 shall 20% of than 20 all be no	ther 10 red at 1 apacito le curr e rated time at ments. be sati initial 0% of leakag	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte.	reture of the sum of Then the tions. The
4.7	life	Capacitance, tax <condition> According to I $105^{\circ}C \pm 2$ with DC and ripple product should result should n <criteria> The characterit Leakage Capacitt tan δ Appeara</criteria></condition>	n δ , and EC6038 h DC bi e peak the l be testineet the astic sha ance Ch ance	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet that thange stored wi	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in Within <u>±</u> Not more There sha	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no	ther 10 red at 1 apacito le curr e rated time at <u>be sati</u> initial 0% of leakag	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 :	$\pm 2^{\circ}$ C. erature of the sum of Then the ions. The ± 2°C for
4.7	life test	Capacitance, tax <condition> According to I $105^{\circ}C \pm 2$ with DC and ripple product should result should n <criteria> The characterit Leakage Capacitt tan δ Appeara <condition> The capacitors a 1000+48/0 how chamber and b</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak v l be testi- neet the astic sha e curren ance Cl ance are then urs. Follow a allow	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the the nange stored wi lowing thi yed to stal	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period th bilized at	s, The ca ated ripp acceed the overing <u>g required</u> 4.3 shall 20% of than 20 all be no age appline capac room ter	ther 10 red at 1 apacito le curr e rated time at <u>ements.</u> be sati initial 0% of leakag ed at a itors sh aperatu	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur nall be remo	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved fror hours. N	$\pm 2^{\circ}$ ℃. erature of the sum of Then the the tors. The the the tors. The the tess Jext they
	life test Shelf	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterint Leakage Capacit tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conne</condition></criteria></condition>	$n \delta$, and EC6038 h DC bi e peak v l be test neet the astic sha e curren ance Ch ance Ch ance ance che are then urs. Follower extend to	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nee shall b 13 method e plus the r nall not ex 5 hours rec 5 table: e followin Value in Within <u>+</u> Not more There sha th no volta is period th bilized at limiting re	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no age appli accom ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>e rated</u> time at <u>initial</u> 0% of leakag ed at a itors sh aperatu $x \pm 100$	$00 \ \mu$ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur all be remo ure for 4~8 Ω) with E	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved from hours. N D.C. rated	$\pm 2^{\circ}$ C for normalized for the tess the tess of the tess best they d voltage
4.7	life test Shelf life	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterit Leakage Capacit tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conner applied for 30t</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak the l be testineet the astic sha e curren ance Ch ance Ch ance ance ch ance and the second ch and the second ch ance and the second ch and the second	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nee shall b 13 method e plus the r nall not ex 5 hours rec 5 table: e followin Value in Within <u>+</u> Not more There sha th no volta is period th bilized at limiting re	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no age appli accom ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>e rated</u> time at <u>initial</u> 0% of leakag ed at a itors sh aperatu $x \pm 100$	$00 \ \mu$ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur all be remo ure for 4~8 Ω) with E	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved from hours. N D.C. rated	$\pm 2^{\circ}$ C for normalized for the tess the tess of the tess best they d voltage
	life test Shelf	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterint Leakage Capacit tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conne</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak the l be testineet the astic sha e curren ance Ch ance Ch ance ance ch ance and the second ch and the second ch ance and the second ch and the second	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nee shall b 13 method e plus the r nall not ex 5 hours rec 5 table: e followin Value in Within <u>+</u> Not more There sha th no volta is period th bilized at limiting re	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no age appli accom ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>e rated</u> time at <u>initial</u> 0% of leakag ed at a itors sh aperatu $x \pm 100$	$00 \ \mu$ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur all be remo ure for 4~8 Ω) with E	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved from hours. N D.C. rated	$\pm 2^{\circ}$ C for normalized for the tess the tess of the tess best they d voltage
	life test Shelf life	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterit Leakage Capacit tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conner applied for 30t</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak the l be testineet the astic sha e curren ance Ch ance Ch ance ance ch ance and the second ch and the second ch ance and the second ch and the second	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nee shall b 13 method e plus the r nall not ex 5 hours rec 5 table: e followin Value in Within <u>+</u> Not more There sha th no volta is period th bilized at limiting re	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no age appli accom ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>e rated</u> time at <u>initial</u> 0% of leakag ed at a itors sh aperatu $x \pm 100$	$00 \ \mu$ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur all be remo ure for 4~8 Ω) with E	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved from hours. N D.C. rated	$\pm 2^{\circ}$ C for normalized for the tess the tess of the tess best they d voltage
	life test Shelf life	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterit Leakage Capacit tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conner applied for 30t</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak the l be testineet the astic sha e curren ance Ch ance Ch ance ance ch ance and the second ch and the second ch ance and the second ch and the second	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nee shall b 13 method e plus the r nall not ex 5 hours rec 5 table: e followin Value in Within <u>+</u> Not more There sha th no volta is period th bilized at limiting re	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no age appli accom ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>ements</u> . <u>be sati</u> <u>initial</u> <u>0% of</u> <u>leakag</u> ed at a itors sh aperatu $x \pm 100$	$00 \ \mu$ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur all be remo ure for 4~8 Ω) with E	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved from hours. N D.C. rated	$\pm 2^{\circ}$ C for normalized for the tess the tess of the tess best they d voltage

Version	01	Page	7

		<criteria></criteria>	
		The characteristic shall meet	the following requirements.
		Leakage current	Value in 4.3 shall be satisfied
1.0	Shelf	Capacitance Change	Within $\pm 20\%$ of initial value.
4.8	life	tan δ	Not more than 200% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
			stored more than 1 year, the leakage current may
			e through about 1 k Ω resistor, if necessary.
4.9	Surge test	The capacitor shall be submit followed discharge of 5 min The test temperature shall b C_R :Nominal Capacitance (1 <criteria></criteria> Leakage current Capacitance Change tan δ Appearance Attention:	e 15~35°C. µ F) Not more than the specified value. Within ± 15% of initial value. Not more than the specified value. There shall be no leakage of electrolyte. ge at abnormal situation only. It is not applicable to such
4.10	Vibration test	perpendicular directions. Vibration frequency ra Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter g in place with a bracket. 4mm or less ✓	2 : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30° To be soldered

Vargion	01	Daga	Q
version	01	Page	0

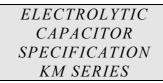
ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

	<u>г</u>					1
		<condition></condition>	. 1 1 4	C 11	1.1.	
		The capacitor shall be tes	ted under the	-	conditions:	
		Soldering temperature		: 245±3°C		
	Solderability	Dipping depth		: 2mm	1	
4.11	test	Dipping speed		: 25±2.5mm	/s	
	iest	Dipping time		: 3±0.5s		
		<criteria></criteria>		A	- f(050)/ f(1) = confront holds	
		Coating quality		immersed	n of 95% of the surface be	ing
				minierseu		
		<condition></condition>				
		Terminals of the capacito	r shall be i	mmersed into	solder bath at 260 ± 5 °C	$C for 10 \pm$
		1 seconds or $400 \pm 10^{\circ}$ C for	$5r3^{+1}_{-0}$ secon	ds to 1.5~2.0	mm from the body of capa	acitor .
		Then the capacitor shall b	be left unde	r the normal t	emperature and normal hu	umidity
	Resistance to	for 1~2 hours before mea			1	5
4.12	solder heat	<c<u>riteria></c<u>				_
	test	Leakage current	No	t more than tl	he specified value.	
		Capacitance Change	Wi	thin $\pm 10\%$ c	of initial value.	
		$\tan \delta$		t more than th	ne specified value.	-
		Appearance	Th	ere shall be n	o leakage of electrolyte.	
		Tippontanoo				
		<condition> Temperature Cycle:Acco placed in an oven, the con</condition>			4.7methods, capacitor sha	ll be
			emperature	nuing as beit	Time	
		(1)+20°C	emperature		≤ 3 Minutes	
			- (10°C) () ())		
	Change of	(2)Rated low temper	· · ·		30 ± 2 Minutes	
4.13	temperature	(3)Rated high temper		5°C)	30 ± 2 Minutes	
	test	(1) to (3)=1 cycle, to	tal 5 cycle			
		<criteria></criteria>				
		The characteristic shall m				
					pecified value.	
		$\tan \delta$ N		Not more than the specified value.		
		Appearance	There	shall be no le	akage of electrolyte.	
		<condition></condition>				
		Humidity Test:				
		According to IEC60384-4	4No.4.12 m	ethods, capac	citor shall be exposed for a	500 ± 8
		hours in an atmosphere of		H .at $40\pm2^\circ$	°C, the characteristic chan	ge shall
		meet the following requir	ement.			
		< <u>Criteria></u>				
4.14	Damp heat	Leakage current		than the spec		
-1.14	test	Capacitance Change		20% of initi		
		tan δ			f the specified value.	
		Appearance	There sha	ll be no leaka	age of electrolyte.	

V	ersion
v	CISION

01


Page

9

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

4.15	Vent test	with vent. D.C. test The capacitor is	````````````````````````````````	larity re plied.		-		
			4 10 berate with no dangero acitor and/or case.	us conc	litions s	uch as f	flames o	r dispersion o
		at 120Hz and c Table-1 The combined	permissible ripple curr can be applied at maxin value of D.C voltage a and shall not reverse vo ultipliers: Coefficient Freq. (Hz)	mum op and the oltage.	erating	tempera	ature	
4.16	Maximum permissible (ripple current)	(V) 6.3~100	Cap.(μ F) ~47 $68 \sim 470$ ≥ 560 $0.47 \sim 220$	0.75 0.80 0.85 0.80	1.00 1.00 1.00 1.00	1.35 1.23 1.10 1.25	1.57 1.34 1.13 1.40	2.00 1.50 1.15 1.60
		160~450	≥270	0.90	1.00	1.10	1.13	1.15

Version 01 Page 10	
--------------------	--

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
ficavy metals	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
Durania stad	Polybrominated biphenyls (PBB)
Brominated	Polybrominated diphenylethers(PBDE) (including
organic	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	oounds(TBT)
Triphenyltin com	npounds(TPT)
Asbestos	
Specific azo com	npounds
Formaldehyde	
Beryllium oxide	
Beryllium copp	er
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)
Perfluorooctane	sulfonates (PFOS)
Specific Benzotr	iazole

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

- (5) Clearance for Seal Mounted Pressure Relief Vents
- A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01	Page	12
------------	------	----

SAMXON

(6)	Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.
(7)	Circuit Board patterns Under the Capacitor
(8)	Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. Screw Terminal Capacitor Mounting
(0)	Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
	Electrical Isolation of the Capacitor Completely isolate the capacitor as follows.
	Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
1.7	The Product endurance should take the sample as the standard.
1.8	If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
1.9	Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the
	capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
	CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open
	circuits which could occur during use.
	(1) Provide protection circuits and protection devices to allow safe failure modes.(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
	apacitor Handling Techniques
	Considerations Before Using
	Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged
	with a resistor with a value of about $1k\Omega$.
(3)	Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$.
	If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
(5)	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can
	result.
	Capacitor Insertion
	Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting.
(3)	Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
	Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the
	capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
23	Manual Soldering
(1)	Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
(3) I	If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
	Flow Soldering
	Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
	Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits. Do not allow other parts or components to touch the capacitor during soldering.
2.5	Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° C for a maximum time of 2 minutes.

Version 01	Page	13
------------	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000 Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version 01 Page 15
